Ephemeral inlets are important and specific components of the coastal barriers of the World Ocean. Within tidal coasts, the corresponding channels are called tidal inlets, and within non-tidal coasts – breaches (prorvas, promoiny, prorany). Ephemeral inlets are important for the development of coastal barrier systems. First of all, they perform the function of hydrological control, determining the features and scale of water exchange between the water bodies adjacent to the barrier. The function of ephemeral inlets aimed at determining the volume and direction of coastal and marine sediment movement is called geological control. The peculiarities of the movement of different species of plants and animals through ephemeral inlets are called ecological control. In this context, the parameters of the studied inlets, the duration of their functioning, and the frequency of closure and opening determine the specific conditions of the adjacent water bodies.

Within the coastal barriers of the non-tidal seas, ephemeral inlets most often occur and function for a long period of time within the accumulative forms of the Tendra-Dzharylgach system. The corresponding barrier is characterized by a certain variety of prorvas associated with the hydrodynamic conditions of the adjacent water bodies.

Among all the prorvas of the above coastal system, the Lazurnenska prorva is the most famous. It should be noted that this name should be understood as all ephemeral inlets that periodically appeared and functioned in the root part of the Dzharylgach Spit. Interest in the Lazurnenska prorva increased after news of its artificial closure spread through a significant number of Ukrainian information resources. Information about the peculiarities of the emergence and functioning of the Lazurnenska prorva is based on certain field materials from almost sixty years ago (Pravotorov I., Shuisky Y., Kotovsky I., Vykhovanetz G., and Davydov O.). The available historical and cartographic material, which covers approximately two hundred and thirty years, allows us to determine the frequency and duration of the functioning of the breaches. The available satellite images make it possible to determine the patterns of evolution of the studied breach over a forty-year period.
The Lazurnenska prorva has certain dynamic trends throughout the year. In the cold season, when waves and wind currents from the east and northeast dominate, the breach widens and deepens. In the warm season, when waves and wind currents from the west and southwest become more active, the breach channel narrows.

In June 2022, it was determined that the studied prorvas was closed (based on satellite images analysis). The analysis indicates that there is a natural tendency for the prorvas closure, but we do not have reliable information on the main reason for the closure. At the beginning of June 2023, the breach has been closed for a year. Under the conditions of long-term closure or artificial maintenance of this condition, very unfavorable consequences will occur within Dzharylgach Bay.

Key words: ephemeral inlets, coastal barrier, non-tidal seas, tidal seas, non-tidal inlets, prorva.

Introduction

Along ~13% of the shoreline of the World Ocean is fronted by coastal barrier systems (Leontiev, Nikiforov, 1965; Stutz, Pilkey 2011; McBride et al., 2013). These accumulation forms are separated from the mainland by back-barrier wetlands, such as bays, lagoons, estuaries, or salt-marshes (Buynevich, FitzGerald, 2018). Inlets (ephemeral or long-lived) are integral parts of barrier spits (one side) and islands (both sides).
In areas characterized by tides, such channels are called tidal inlets, with tidal currents crucial for inlet dynamics, though not origin (Lucke 1934; Gudelis 1993; FitzGerald 1996; Hayes, FitzGerald 2013; FitzGerald, Buynevich, 2018). Along small enclosed or semi-enclosed seas, as well as some lakes, non-tidal inlets exist and have been given names prorvas (“breach”) regardless of their life span (Borisenko, 1946; Budanov, Ionin, 1953; Zenkovich, 1960; Pravotorov, 1966; Shuisky, Vikhovanetz, 1989, 1999; Cooper 1990; FitzGerald et al., 2012; Seminack, Buynevich, 2013; Davydov, Karaliunas, 2022). Morphodynamically, these are complex coastal features with essential elements being a channel proper and accumulation forms on one or both ends (seaward and back-barrier surge deltas; Davydov, Buynevich, 2023).

Depending on hydrodynamic forcing, prorvas represent ephemeral channels, which are characterized by diverse patterns of evolutionary at annual and multi-decadal scales. The main stages include opening (during storms, anthropogenic, etc.), dynamic functioning (longshore migration, widening, rotation), and closure. It is important to note, that these are characteristic of both tidal and non-tidal inlets (FitzGerald 1996; FitzGerald et al., 2012; Bond et al., 2013; Buynevich, Davydov, 2023).

Inlet closure is a rare and important event that has wide-reaching implications for the rapid re-structuring of associated coastal landforms and processes. The aim of this study is to document the recent evolution of the Lazurnenska Prorva, Ukraine, with a focus on its recent closure (June 2022) and potential consequences for near-term impact on sediment transport, coastal morphology, and ecology.

Study area

Lazurnenska Prorva is one of the most accessible inlets of the Tendra-Dzharylgach double-slit system and has been documented to exist within several hundred meters east of the town of Lazurne (46°05‘2.40”N / 32°31‘46.38” E; Fig. 1). As aforementioned, the ephemeral channels undergo closure and it is important to consider the study site in the context of all openings that existed at the root of the Dzharylgach Spit (Fig. 1c; Davydov, Buynevich 2023). Analysis of historical documents and satellite data (Fig. 1 d-f) spanning the early 19th to early 21st centuries, indicates that ephemeral inlets existed during the entire history of this coastal segment, with only short-term closure phases (up to 3 years). Along the rest of the narrow spit to the east, other prorvas existed, but were short-lived (1-2 years), so were largely non-functional (Pravotorov, 1966; Shuisky, Vikhovanetz 1999).

The genesis of ephemeral channels at the study site were largely due to hydrodynamic forcing from the bay side, similar to an ebb-surge origin of many tidal inlets (Pravotorov, 1966; Davydov, Karaliunas, 2022). Such a scenario is due to the dominance of regional east and northeast wind stress. The hydrodynamic head (water-level rise) is due to the resulting trapping (set-up) of back-barrier water in the western corner of Dzharylgach Bay (Fig. 1c). At the same time, such wind patterns cause a drop in water level (offshore wind) along the seaward side of the barrier (Karkinit Bay). Wave-generated erosion of the rear side of the narrow barrier and the hydraulic differential combine to result in frequent breaching.

It is important to note that ephemeral channels to the east are largely due to storm wave set-up, erosion, overtopping, and overwash from the seaward side of the barrier (Shuisky, Vykhovanetz, 1999). Such processes were documented along Dzharylgach Spit in the early-to-mid-20th century, however, they have not occurred during the past 30 years.

Within Dzharylgach Bay, the wind regime and its hydrodynamic forcing (seiching) are characterized by opposite seasonal trends (Fig. 2). During the cold period, east and northeast wind fields dominate, producing the aforementioned set-up within the bay. In contrast, the warm season is characterized by southwest winds, which stimulate incident waves along the seaward flank of the barrier and drop in back-barrier water level. These patterns result in cold-season intensification of inlet activity and its enlargement (length and width; Fig. 2a). Warmer periods are characterized by the formation of secondary spits extending to the east (down-drift relative to longshore transport), often causing a reduction in active channel morphology (Fig. 2b) and sometimes leading to its closure.

Analysis of satellite images of the root (attachment) segment of the Dzharylgach Spit indicates that Lazurnenska Prorva exhibits certain multi-annual patterns. Within the overall life cycle of the inlet system, the patterns of
opening-dynamics-closure occur at varying time intervals. During intensification of storm activity, which controls the longshore transport, opening, and activity of the inlet typically does not exceed several months, whereas it may remain closed for up to 3–4 years. Such trends have been cataloged for the period of the 1980s and the first half of the 1990s.

During periods of reduced storminess, but with greater offshore wind duration, the increased exchange between the Dzharylgach and Karkinit Bays results in longevity and intensified activity of the channel. Beginning in the latter half of the 1990s, the active phase lasted for 10–15 years, with occasional closures for 1–2 years.

Materials and methods

This study is part of a larger regional research campaign based on the analysis of satellite and aerial imagery, as well as field data collection, along the Tendra-Dzharylgach barrier system.

Fig. 1. Location of the study area and general stages of Lazurnenska Prorva: a – general location along the south coast of Ukraine; b – position within the Tendra-Dzharylgach barrier system; c – the root segment of the Dzharylgach spit (note recurved segment to the east); d – detail of the inlet in 1965; e – 1973; f – 2019 (note a large bay-side surge delta; image source: GoogleEarthTM)
Within this system, a number of ephemeral inlets (prorvas) have been documented but are largely characterized by three active channel sites. Two of them are located along the root (attachment) segments of each spit complex, with one (and sometimes two or three) along the central parts of the Tendra Spit (see recent summary by Davydov, Karaliunas, 2022).

Because of varying spatial and temporal aspects of inlet life cycle, an integrated approach is required, including historical document analysis, photogrammetry, and satellite image comparison, remotely sensed data, field visits, and personal communication with local residents and authorities. The overall morphodynamic trends are analyzed using photogrammetry and video materials using a DJI Mini 2 Fly More Combo drone (altitude: up to 120 m) and a UAV (altitude: up to 400 m). Data post-processing and analysis were performed using Pix4D software. Satellite images were rectified and examined public resources: GoogleEarthTM, Land Viewer, and Sentinel Hub (Figs. 1-3). Free-access Key Hole images from 1965 and 1973 (Fig. 1) were extended by Landsat and Sentinel platforms that covered the period of 1982-2023.

Field research typically occurred semi-annually, typically at the end of warm and cold seasons. This research includes leveling using an electronic NTS-350 unit, both along and across the barrier. These investigations allow a multi-year comparison of morphometric and hydrodynamic aspects of the channels and associated barrier and surge delta regions. Geo-location and mapping using GPS units, such as Garmin eTrex 10, provide unique high-resolution spatio-temporal datasets. It is worth noting, that such data will have a gap due to full-scale military operations and potential mine hazards beginning in February 2022.

Results
Lazurnenska Prorva functioned for ~20 years (2003-2022) and during this period its size shrunk substantially several times, narrowing to 12.3 m in July 2020 based on field measurements. However, it expanded annually during colder phases when more efficient water-mass exchange prevented it from closing. From May 2021 to May 2022, there existed a stable tendency of decreasing width and depth.

Based on field surveys, by the beginning of May 2021, the channel width was ~71 m, with a depth of 1.48 m. Morphologically, the inlet had dimensions typical of the earlier half of that year, oriented perpendicular to the barrier. Satellite images (Fig. 3a, b) are supported by field data, with channel width diminishing from 62 m (April) to 53 m (June). During the summer months, wave approach from west/southwest resulted in easterly longshore transport. As a result, a secondary spit

![Image 1](image1.png)

![Image 2](image2.png)

Fig. 2. Seasonal trends in the development of Lazurnenska Prorva: *a* – general view during the cold season; *b* – warm-season scenario (image source: Land Viewer)
began extending eastward, steadily reducing inlet width and forcing a channel angle to approach 45° (Fig. 3c, d). During the fall, there were no east/south-east wind forcing and no activization of water exchange through the prorva. As a consequence, the secondary spit essentially blocked the channel, reducing its orientation angle to 25° (Fig. 4a). By the beginning of December 2021, the most recent field surveys revealed that the channel was 21 m wide and relatively inactive morphodynamically (Fig. 4b).

The beginning of full-scale military operations in February 2022, including in the Kherson Region along the eastern (left) bank of the Dnieper River, prevented further field investigations. The subsequent analysis relied on remotely sensed databases and personal communications with local contacts. Dense cloud cover during winter and early spring precluded satellite observations of inlet behavior. In April 2022, Lazurnenska Prorva lacked morphological features consistent with active water exchange between the water bodies during the preceding cold period. Its width did not exceed 30 m, which was smaller than at this time during previous years (Fig. 3e). In early May, the inlet was still active, although its dimensions were

Fig. 3. Chronology of recent changes in the region of Lazurnenska Prorva: a – open (width: 62 m), April 2021; b – open (width: 53 m), June 2021; c – open (width: 48 m), August 2021; d – open (width: 31 m), October 2021; e – open (width: 33 m), April 2022; f – closed, June 2022; g – closed, October 2022; h – closed, March 2023; i – closed, June 2023 (yellow values refer to channel width; image source: Land Viewer)
anomalously small, suggesting a tendency toward impending closure.

By the beginning of June 2022, the inlet eat of Lazurne ceased to exist (Fig. 3f). The precise reason for its closure is not clear, however, local residents indicated that it was closed artificially, with water exchange limited to pipes. To date, this has not been independently verified. Analysis of satellite images spanning from June 2022 to June 2023, indicates that Lazurnenska Prorva is not active (Fig. 3f-i). Along the seaward side of the barrier, there is a clearly defined nearshore sandbar consistent with active longshore transport. The barrier width at the former inlet site is 89.5 m, although just 2.58 km to the east, active erosion reduced it to 31.3 m, with the potential for this site to breaching in the future.

Discussion

As of summer 2023, Lazurnenska Prorva has been closed for at least a year, which is not anomalous, since according to satellite data spanning the past 50 years its phases of closure lasted for up to 3 years. It is important to know that in the event of a prolonged absence of an active channel in this part of Dzharylgach Spit, the following consequences may be expected:

1) wave approach from south/southwest will cause water-level rise along the seaward margin of the barrier, which will result in erosion, overwash, and even breaching, thereby forming a new inlet cycle;

2) behind the barrier, within the southwest corner of Dzharylgach Bay, east/northeast wind stress will cause seiching. This may result in mainland erosion and flooding of the eastern shore of Lazurne settlement (last event: March 2007) and “ebb-surge”-style breaching due to water set-up.

3) water exchange between Dzharylgach and Karkinit Bays has stopped, which will undoubtedly influence its physicochemical properties and will trigger progressive shoaling and siltation of the back-barrier;

4) the migration pathways of free-swimming organisms have been severed, including fish and mammals, as well as many species of invertebrates;

5) the status of Dzharylgach Bay as a coastal wetland habitat of national importance will substantially deteriorate, which will lead to a decline in aquatic ecosystems and a reduction of biodiversity.

Conclusions

This study presents a unique integrated database of evolutionary trends of Lazurnenska Prorva, including the morphodynamic tendencies from May 2021 to May 2022 that led to its closure. We suggest that this is likely caused by a reduction in east/northeast wind forcing during colder seasons, decreasing the water set-up within the southwest corner of Dzharylgach Bay. Inlet closure is a natural process, although this most recent event may have been anthropogenic in nature. If maintained over a number of years, such closure may lead to a number of negative consequences, both for Dzharylgach Spit and the bay. This study is especially prescient due to ongoing military activity in the region, with likely long-term consequences to research and the livelihood of coastal communities that rely on marine resources and recreation.

Acknowledgments

We thank Prof. Yu. D. Shuisky, Dr. D. O. Chernyakov, and Prof. D. M. FitzGerald for their helpful advice in writing the article.
REFERENCES:

