WINTER SYNOPTIC PROCESSES THAT CAUSE LARGE ANOMALIES OF EXTREME HIGH AIR TEMPERATURES OVER EASTERN EUROPE
Abstract
The paper describes typical synoptic processes that led to extreme-high temperatures for the last 30 years (1987-2017) in Eastern Europe. There are three main groups of processes that lead to significant air temperature anomalies for the period of 12 UTC, which are observed simultaneously over more than 25% of the selected domain. Those three groups of situations describe 67% of all episodes with large areas of extremely high air temperature above the 95th percentile of the distribution function for each grid points in the Eastern European sector. For the synoptic processes of the first group, the characteristic feature is the presence of a deep circumpolar low belt above the northern polar zone at the 500 hPa level. It causes a powerful zonal air flow. For the surface pressure field, there is a movement of a cyclone or a series of cyclones from the North Sea towards Scandinavia or northern Russia. In the case of the processes of the second group, an upper trough is observed over Western Europe for several days. The Eastern European sector is covered by the upper ridge or being under its western periphery. For the surface pressure field, a system of cyclones with typical locations over Great Britain, Scandinavia and Central Europe is observed. The typical configuration of the field at the 500 hPa level for the processes of the third group is characterized by an upper trough extending from Scandinavia to Central Europe or affecting the western part of the Eastern European sector. Nearly 67% of days with large areas with extremely high air temperatures included in the catalogue refer to the mentioned in the article three groups of synoptic processes. From the sample of 30 years 1987-2017, the first group of processes describes 10 episodes, the second –13 episodes and the third – 7 episodes. The remaining 35% of days with large anomalies are mostly short-lived and observed during several or even one day. Moreover, such anomalies are characterized by fewer areas of coverage and typically observed over the south or south-west part of the domain.
References
2. Вангенгейм Г.Я. Основы макроциркуляционного метода долгосрочных метеорологических прогнозов для Арктики. Труды Арктического и антарктического научно-исследовательского института. 1952. Т. 34. С. 314.
3. Воскресенская Е.Н., Наумова В.А., Евстигнеев М.П., Евстигнеев В.П. Классификация синоптических процессов штормов в Азово-Черноморском бассейне. Наукові праці Українського науково-дослідного гідрометеорологічного інституту: збірник наукових праць. 2009. Вип. 258. С. 189–200.
4. Гирс А.А. Макроциркуляционный метод долгосрочных метеорологических прогнозов. Л.: Гидрометеоиздат, 1974. 488 с.
5. Дзердзеевский Б.Л., Монин А.С. Типовые схемы общей циркуляции атмосферы и индекс циркуляции. Известия Академии наук СССР. Серия «Геофизика». 1954. № 6. С. 562–574.
6. Звіт про НДР № 1/12 «Фізико-статистичний аналіз та прогноз зміни сучасного клімату регіонів України для підтримання сталого розвитку економіки України». URL: http://ndr.dsns.gov.ua/wp-content/uploads/delightfuldownloads/2018/08/1-12уменш_Часть1.pdf.
7. Ивус Г.П., Агайар Э.В., Гурская Л.М., Семергей-Чумаченко А.Б. Циркуляционные условия возникновения сильного и стихийного ветра над южным западом Украины. Український гідрометеорологічний журнал. 2016. № 17. С. 38–48.
8. Кононова Н.К. Классификация циркуляционных механизмов Северного полушария по Б.Л. Дзердзеевскому / отв. ред. А.Б. Шмакин. М.: Воентехиниздат, 2009. 372 с.
9. Кренке А.Н., Разуваев В.Н., Китаев Л.М., Мартуганов Р.А., Шакирзянов Р.И. Снежность на территории СНГ и его регионов в условиях глобального потепления. Криосфера Земли. 2000. Т. IV. № 4. С. 97–106.
10. Мартазинова В.Ф., Иванова Е.К., Щеглов А.А. Тенденция современного температурно-влажностного режима Украины к аномальности за счет атмосферных процессов в летний сезон. Наукові праці Українського науково-дослідного гідрометеорологічного інституту. 2016. Вип. 268. С. 15–24.
11. Мартазинова В.Ф., Иванова Е.К. Использование синоптической информации методов плавающего и традиционного аналогов в представлении текущих синоптических процессов. Наукові праці Українського науково-дослідного гідрометеорологічного інституту. 2008. Вип. 257. C. 5–15.
12. Переведенцев Ю.П., Мохов И.И., Елисеев А.В. Теория общей циркуляции атмосферы. Казань: Казанский университет, 2013. 224 с.
13. Cavalieri D.J., Parkinson C.L. Arctic sea ice variability and trends, 1979–2010. The Cryosphere. 2012. № 6. P. 881–889.
14. Cohen J., James A., Screen J.A., Furtado J.C., Barlow M., Whittleston D., Coumou D., Francis J., Dethloff K., Entekhabi D., Overland J., Jones J. Recent Arctic amplification and extreme midlatitude weather. Nature Geoscience. 2014. № 7. P. 627–637.
15. Domonkos P., Kysely J., Piotrowicz K., Petrovic P., Likso T. Variability of extreme temperature events in south-central Europe during the 20th century and its relationship with large-scale circulation. Int. J. Climatol. 2003. № 23. P. 987–1010.
16. Oldenborgh G.J. van et al. Western Europe is warming much faster than expected. Clim Past. 2009. № 5. P. 1–12.
17. Kalnay E. et al. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society. 1996. № 77. P. 437–471.
18. Loikith P.C., Broccoli A.J. Characteristics of Observed Atmospheric Circulation Patterns Associated with Temperature Extremes over North America. J. Climate. 2012. № 25. P. 7266–7281. URL: https:.doi.org/10.1175/JCLI-D-11-00709.1.
19. Shevchenko O., Lee H., Snizhko S., Mayer H. Long term analysis of heatwaves in Ukraine. International Journal of Climatology. 2013. Vol. 34. № 5. Р. 3792.
20. Martazinova V. The Classification of Synoptic Patterns by Method of Analogs. J. Environ. Sci. Eng. 2005. № 7. P. 61–65.
21. Pfahl S. Characterising the relationship between weather extremes in Europe and synoptic circulation features. Nat. Hazards Earth Syst. Sci. 2014. № 14. P. 1461– 1475. URL: https:.doi.org/10.5194/nhess-14-1461-2014.
22. Tomczyk A.M., Bednorz E. Heat waves in Central Europe and their circulation conditions. International Journal of Climatology. 2016. Vol. 36. Iss. 2. P. 770–782.
23. Tomczyk А.М. Impact of atmospheric circulation on the occurrence of heat waves in southeastern Europe. Idojaras. 2016. № 120. P. 395–414.
24. Wetterzentrale. URL: http://www.wetterzentrale.de/.