COMPARATIVE ANALYSIS OF AUTOMATIC PATTERN MORPHOMETRICAL LANDFORM CLASSIFICATIONS BASED ON DIGITAL ELEVATION MODELS

Keywords: landform, geomorphometry, topographic position index, geomorphon, FABDEM

Abstract

The paper presents a comparative analysis of automatic geomorphometric classifications based ondigital elevation models using different methods, in particular, the method of classifying landforms basedon the topographic position index (TPI) and the geomorphon method. For the purpose of comparativeanalysis of the classification results, these methods were tested on two key square-configured areas withdifferent terrain morphology oriented along the main sides of the horizon within the Dnipro region. As aresult of the study, it was found that the topographic surface patterns identified by the geomorphon methodprovide more accurate and reliable results in large-scale studies compared to the use of TPI. It was foundthat the method based on the topographic position index is the most suitable for medium- and smallscalemapping, since it showed less details with the same parameters of the outer search radius. The mainproblem of geomorphometric analysis is that a clear delineation of landforms is often impossible becausethey do not have clear boundaries, and thus the interpretation of these forms, despite the mathematicalbasis of classifications, is still quite subjective. For the first time in Ukraine, a new digital elevationmodel FABDEM with a spatial resolution of 1 arc second was tested for large-scale geomorphometric analysis in key areas, and its advantages and disadvantages were identified in comparison with othersimilar global models. The study clarified the basic terminology of geomorphometric research, proposedUkrainian-language equivalents to the classes of terrain forms developed in foreign literature. Thenecessity of distinguishing between types of digital models, namely, digital elevation model (DEM)and digital surface model (DSM) in the context of understanding the terrain as an organization of theelevation field was substantiated. The application of automatic classifications will solve the problem ofthe high cost and complexity of manual analysis of landforms and will accelerate the creation of largescalegeomorphological maps with nationwide coverage.

References

1. Gawrysiak, L., & Kociuba, W. (2020). Application of geomorphons for analysing changes in the morphology of a proglacial valley (case study: The Scott River, SW Svalbard). Geomorphology, 371, 107449. URL: https://doi.org/10.1016/j.geomorph.2020.107449.
2. Gioia, D., Danese, M., Bentivenga, M., Pescatore, E., Siervo, V., & Giano, S. I. (2020). Comparison of Different Methods of Automated Landform Classification at the Drainage Basin Scale: Examples from the Southern Italy. Lecture Notes in Computer Science. URL: https://doi.org/10.1007/978-3-030-58802-1_50.
3. Gioia, D., Danese, M., Corrado, G., Di Leo, P., Amodio, A., & Schiattarella, M. (2021). Assessing the Prediction Accuracy of Geomorphon-Based Automated Landform Classification: An Example from the Ionian Coastal Belt of Southern Italy. ISPRS International Journal of Geo-information, 10(11), 725. URL: https://doi.org/10.3390/ijgi10110725.
4. Guth, P. L., Van Niekerk, A., Grohmann, C. H., Muller, J., Hawker, L., Florinsky, I. V., Gesch, D. B., Reuter, H., Herrera-Cruz, V., Riazanoff, S., López-Vázquez, C., Carabajal, C. C., Albinet, C., & Strobl, P. (2021). Digital Elevation Models: Terminology and Definitions. Remote Sensing, 13(18), 3581. URL: https://doi.org/10.3390/rs13183581.
5. Hawker L. & Neal J. (2021): FABDEM V1-0. URL: https://doi.org/10.5523/bris.25wfy0f9ukoge2gs7a5mqpq2j7.
6. Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J. L., Sampson, C., & Neal, J. (2022). A 30 m global map of elevation with forests and buildings removed. Environmental Research Letters, 17(2), 024016. URL: https://doi.org/10.1088/1748-9326/ac4d4f.
7. Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons – a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147–156. URL: https://doi.org/10.1016/j.geomorph.2012.11.005.
8. Jenness, J. (2006). Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, v. 1.3a. Jenness Enterprises. URL: http://www.jennessent.com/arcview/tpi.htm.
9. Liao, J., Zhou, J., & Yang, W. (2021). Comparing LiDAR and SfM digital surface models for three land cover types. Open Geosciences, 13(1), 497–504. URL: https://doi.org/10.1515/geo-2020-0257.
10. Mashimbye, Z. E., & Loggenberg, K. (2023). A Scoping Review of Landform Classification Using Geospatial Methods. Geomatics, 3(1), 93–114. URL: https://doi.org/10.3390/geomatics3010005.
11. Mokarram, M., Roshan, G., & Negahban, S. (2015). Landform classification using topography position index (case study: salt dome of Korsia-Darab plain, Iran). Modeling Earth Systems and Environment, 1(4). URL: https://doi.org/10.1007/s40808-015-0055-9.
12. Pál, M., & Albert, G. (2021). The use of geomorphons in geodiversity assessment. EGU General Assembly Conference Abstracts. URL: https://doi.org/10.5194/egusphere-egu21-1363.
13. Polidori, L., & Hage, M. E. (2020). Digital Elevation Model Quality Assessment Methods: A Critical Review. Remote Sensing, 12(21), 3522. URL: https://doi.org/10.3390/rs12213522.
14. Siervo, V., Pescatore, E., & Giano, S. I. (2023). Geomorphic analysis and semi-automated landforms extraction in different natural landscapes. Environmental Earth Sciences, 82(5). URL: https://doi.org/10.1007/s12665-023-10823-4.
15. Stoker, J. M. (2020). Defining technology operational readiness for the 3D Elevation Program – A plan for investment, incubation, and adoption. U.S. Geological Survey Open-File Report. URL: https://doi.org/10.3133/ofr20201015.
16. Veselský, M., Bandura, P., Burian, L., Harciníková, T., & Bella, P. (2015). Semi-automated recognition of planation surfacesand other flat landforms: a case study from theAggtelek Karst, Hungary. Open Geosciences, 7(1). URL: https://doi.org/10.1515/geo-2015-0063.
17. Weiss, A. (2001). Topographic position and landforms analysis. Poster Presentation. ESRI Users Conference, San Diego, CA. URL: http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf.
18. Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J., Sampson, C., Kanae, S., & Bates, P. D. (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44(11), 5844–5853. URL: https://doi.org/10.1002/2017gl072874.
19. Горішний, П. (2018). Класифікація рельєфу кар’єрів. Проблеми геоморфології і палеогеографії Українських Карпат і прилеглих територій, 8(1), 144–154. [Horishnyj, P. (2018). Classification of relief of quarries. Problems of Geomorphology and Paleogeography of the Ukranian Carpatians and Adjacent Areas, 8(1), 144–154. (In Ukrainian)]. URL: https://doi.org/10.30970/gpc.2018.08.2024.
20. Савка, Г., & Шушняк, В. (2019). Морфотипи рельєфу Розточчя. Проблеми геоморфології і палеогеографії Українських Карпат і прилеглих територій, 2(10), 52–72. [Savka, H., & Shushniak, V. (2019). Roztochia landform morphotypes. Problems of Geomorphology and Paleogeography of the Ukranian Carpatians and Adjacent Areas, 2(10), 52–72. (In Ukrainian)]. URL: https://doi.org/10.30970/gpc.2019.2.3063.
Published
2023-08-16
Pages
59-66
Section
SECTION 2 NATURAL-GEOGRAPHICAL AND ECOLOGICAL RESEARCHES