GRANULOMETRY OF COASTAL SEDIMENTS AS AN INDICATOR OF LITHODYNAMIC PROCESSES: KINBURNSKA-POKROVSKADOVGIY COASTAL SYSTEM, BLACK SEA, UKRAINE

Keywords: coastal accumulative form, coastal and marine sediments, leading fraction, median diameter, sorting coefficient, longshore sediment flow

Abstract

Global climate change could lead, already by 2100, to an increase in the average sea level of theWorld's oceans by 0.63–1.01 meters. Rising levels will lead to active transformation of the coastal zone,especially within coastal sandy accumulative forms. The evolution of sandy coastal accumulative formscan have different trends.In this context, there are two opposing viewpoints in the scientific world. One view suggests thatcoastal sand molds will experience severe erosion, while another view suggests that these molds willadapt to the new hydrodynamic conditions and gradually rebuild.To gain the most accurate understanding of how sandy coastal accumulation forms may change overtime, it is important to consider both the hydrodynamic conditions of their formation and the uniquegranulometry composition of these forms. The granulometry composition represents one of the mostimportant factors in the stability of coastal accumulative forms.In the north-western part of the Black Sea lies the Kinburnska-Pokrovska-Dovgiy coastal system.All morphological elements of the system are composed exclusively of sand-shell sediments and arecharacterized by insignificant morphometric parameters. The described conditions cause very highdynamism in coastal processes, a significant probability of destructive evolution of the whole system, anda significant risk of flooding coastal areas.The granulometry analysis of the coastal-marine sediments comprising the coastal system understudy is very important for understanding its stability and identifying possible evolutionary trends. Thisanalysis is a very important source of information on the potential for creating artificial aeolian landformsas natural shore protection barriers along the seashore of the system.To carry out the granulometry analysis, we collected sediment samples along the entire offshorecontour of the system during field surveys between 2019 and 2021. The selected samples were analyzedin the laboratory of Kherson State University. Granulometry analysis results determined the coastal-marine sediment's dominant sediment fraction,median, and sorting factor for the whole system and its constituent elements. The study of the spatialdifferentiation of the coastal-marine sediments made it possible to confirm the lithodynamic conditionsand identify the most morpho-dynamically vulnerable areas within the system.

References

1. Bruun, P. (1962). Sea level rise as a cause of shoreline erosion. Journal of Waterways and Harbors Division, Proc. ASCE, 88, WW1, 117–130.
2. Carter, R.W.G., Johnston, T.W., McKenna, J., & Orford, J.D. (1987). Sea level, sediment supply and coastal changes: Examples from the coast of Ireland. Progress in Oceanography, 18 (1–4), 79–101.
3. Cooper, J.A.G., & Navas, F. (2004). Natural bathymetric change as a control on century-scale shoreline behavior. Geology, 32 (6), 513. https://doi.org/10.1130/G20377.1.
4. Corbella, S., & Stretch, D.D. (2012). Predicting coastal erosion trends using non-stationary statistics and process-based models. Coastal Engineering, 70, 40–49. https://doi.org/10.1016/j.coastaleng.2012.06.004.
5. Fox-Kemper, B., Hewitt, H.T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S.S., Edwards, T.L., Golledge, N.R., Hemer, M., Kopp, R.E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I.S., Ruiz, L., Sallée, J.-B., Slangen, A.B.A., and Yu, Y. (2021). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou B. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362, https://doi.org/10.1017/9781009157896.011.
6. Healy, T. (1996). Sea level rise and impact on nearshore sedimentation: An overview. Geologische Rundschau, 85 (3), 546–553.
7. Honeycutt, M. R., & Krantz, D. (2003). Influence of the geologic framework on spatial variability in long-term shoreline change, Cape Henlopen to Rehoboth Beach, Delaware. Journal of Coastal Research, SI 38, 147–167. ISSN 0749-0208.
8. Jarmalavičius, D., Žilinskas, G., & Pupienis, D. (2017). Geologic framework as a factor controlling coastal morphometry and dynamics. Curonian Spit, Lithuania. International Journal of Sediment Research, 32(4), 597–603. https://doi.org/10.1016/j.ijsrc.2017.07.006.
9. Nicholls, R.J., Leatherman, S.P., Dennis, K.C., & Volonté, C.R. (1995). Impact and responses to sealevel rise: Qualitative and quantitative assessments. Journal of Coastal Research, SI 14, 26–43.
10. Storms, J.E.A., Weltje, G.J., Van Dijke, J.J., Geel, C.R., & Kroonenberg, S.B. (2002). Process-Response Modeling of Wave-Dominated Coastal Systems: Simulating Evolution and Stratigraphy on Geological Timescales. Journal of Sedimentary Research, 72(2), 226–239. https://doi.org/10.1306/052501720226.
11. Vousdoukas, M.I., Ranasinghe, R., Mentaschi, L., Plomaritis, T.A., Athanasiou, P., Luijendijk, A., & Feyen, L. (2020). Sandy coastlines under threat of erosion. Nature Climate Change, 10 (3), 260–263. https://doi.org/10.1038/s41558-020-0697-0.
12. Zhang, K., Douglas, B. C., & Leatherman, S. P. (2004). Global Warming and Coastal Erosion. Climatic Change, 64 (1/2), 41–58. https://doi.org/10.1023/B:CLIM.0000024690.32682.48.
13. Айбулатов, Н.А. (1966). Исследование вдольберегового перемещения песчаных наносов в море. Москва : Наука. 160 [Aybulatov, N.A. (1966). Investigation of longshore transport of sandy sediments in the sea. Moscow : Nauka. 160 (in Russian)].
14. Выхованец, Г.В., Муркалов, А.Б., Стоян, А.А. (2014). Динамическая устойчивость размеров песчаных пляжей в береговой зоне Черного моря. Вісник Одеського національного університету. Сері: «Географічні та геологічні науки». Т. 19, Вип. 1, 53–68. [Vykhovanets, G.V., Murkalov A.B., Stoyan A.A. (2014). Dynamical Steadiness Of Sandy Beaches Sizes In The Black Sea Coastal Zone. Bulletin of Odessa National University. Series: Geographical and geological sciences. T. 19, Issue 1, 53–68 (in Russian)].
15. Давидов, О.В. (2019). Загальна характеристика берегової системи «крилатий мис» Кінбурнська-Покровська-Довгий. Науковий вісник Херсонського державного університету. Серія «Географічні науки». 11. С. 95–105. [Davydov, O.V. (2019). General Characteristics of the Kinburnska-Pokrovska-Dovgy «Winged Foreland» Coastal System. Kherson State University Herald. Series: «Geographical Sciences». 11. pp. 95–105 (in Ukrainian)]. https://doi.org/10.32999/ksu2413-7391/2019-11-13.
16. Давидов, О.В., Чаус, В.Б., Муркалов, О.Б., Роскос, О.М., Сімченко, С.В. (2021 а). Морфологічна будова берегової зони бар’єрної системи «крилатого мису» Кінбурнська-Покровська-Довгий. Науковий вісник Херсонського державного університету. Серія «Географічні науки». 14. С. 39–51.
[Davydov, O.V., Chaus, V.B., Murkalov, O.B., Roskos, O.M., Simchenko, S.V. (2021 a). Morphological conditions of the coastal zone of the barrier system of “winged foreland” Kinburns`ka-Pokrovs`ka-Dovgiy. Kherson State University Herald. Series: “Geographical Sciences”. 14. pp. 39–51 (in Ukrainian)]. https://doi.org/10.32999/ksu2413-7391/2021-14-5.
17. Давидов, О.В., Чаус, В.Б., Онойко, Ю.Ю., Роскос, О.М., Сімченко, С.В. (2021 б), Моніторинг морфодинаміки берегового бар’єру «крилатий мис» Кінбурнська-Покровська-Довгий (за 2019–2021 роки). Науковий вісник Херсонського державного університету. Серія «Географічні науки». 15. С. 39–50. [Davydov, O.V., Chaus, V.B., Onoiko, Yu.Yu., Roskos, O.M., Simchenko, S.V. (2021 b). Monitoring of morphodynamics of the coastal barrier “winged foreland” Kinburns`ka-Pokrovs`ka-Dovgiy (during 2019–2021) Kherson State University Herald. Series: «Geographical Sciences». 15. pp. 39–50 (in Ukrainian)]. https://doi.org/10.32999/ksu2413-7391/2021-15-4.
18. Долотов, Ю.С. (1989). Динамические обстановки прибрежно-морского рельефоорбразования и осадконакопления (Аксенов, А.А., Ed.). Москва : Наука. 268 [Dolotov, Y.S. (1989). Dynamical conditions of coastal-marine relief formation and sedimentation (Aksenov, A.A., Ed.). Moscow : Nauka. 268 (in Russian)].
19. Зенкович, В.П. (1958). Берега Черного и Азовского морей. Москва. Государственное издательство географической литературы. 374 с. [Zenkovich, V.P. (1958). Shores of the Black and Azov Seas. Moscow. State Publishing House of Geographical Literature. 374 с. (in Russian)].
20. Зенкович, В.П. (1960). Морфология и динамика советских берегов Черного моря. Т. ІІ (Северо-западная часть). Москва : Изд-во АН СССР. 216 c. [Zenkovich, V.P. (1960). Morphology and dynamics of the Soviet coast of the Black Sea. T. II (North-Western part). Moscow : USSR Academy of Sciences. 216 p. (in Russian)].
21. Кривульченко, А.І. (2016). Кінбурн: ландшафти, сучасний стан та значення : монографія. Кропивницький : Центрально-Українське видавництво. 416 с. [Kryvulʹchenko, A.I. (2016). Kinburn: landscapes, current status and significance: Monograph. Kropyvnytsʹkyy : Tsentralʹno-Ukrayinsʹke vydavnytstvo. 416 p. (in Ukraine)].
22. Лонгинов, В.В. (1963). Динамика береговой зоны бесприливных морей. Москва : АН СССР. 380. [Longinov, V.V. (1963). Dynamics of the coastal zone of non-tidal seas. Moscow : USSR ACADEMY OF SCIENCES. 380 (in Russian)].
23. Пазюк, Л.И., Рычковская, Н.И. (1965). Некоторые данные о составе и условиях накопления тяжелых минералов в прибрежных отложениях Кинбурнского полуострова. Совещания по изучению геологии побережья и дна Черного и Азовского морей в пределах УССР / отв. ред. И.Я. Яцко. Одесса. С. 76–79. [Pazyuk, L.I., Rychkovskaya, N.I. (1965). Some data on the composition and conditions of accumulation of heavy minerals in the coastal sediments of the Kinburn Peninsula. Meetings on the study of geology of the coast and bottom of the Black and Azov Seas within the Ukrainian SSR / ed. I. Yatsko. Odessa. P. 76–79 (in Russian)].
24. Підгородецький, П.Д. (1965). Морфологія і динаміка берегів Кінбурнського півострова. Геоморфологія річкових долин України. Київ : Наукова думка. С. 101–107. [Pidhorodetsʹkyy, P.D. (1965). Morphology and dynamics of the shores of the Kinburn Peninsula. Geomorphology of river valleys of Ukraine. Kiev : Naukova dumka. pp. 101–107 (in Ukraine)].
25. Правоторов, И.А. (1966). Геоморфология лагунного побережья северо-западной части Черного моря (Исследование эволюции береговых форм с помощью гидрометеорологического метода): дисс. … канд. геогр. наук. Москва : Университет имени М.В. Ломоносова, 324. [Pravotorov, I.A. (1966). Geomorphology of the lagoonal coast of the north-western part of the Black Sea (Investigation of the evolution of coastal forms by means of the hydrometeorological method). Dissertation for the degree of Candidate of Geographical Sciences. Moscow : Lomonosov University, 324 p (in Russian)].
26. Цайтц, Е.С., Сокольников, Ю.Н., Хомицкий, В.В. (1979). Инженерные исследования и освоение аккумулятивных форм прибрежной зоны моря. Исследование динамики рельефа морских побережий / под. ред. В.П. Зенкович, Л.Г. Никофоров. Москва : Наука. С. 81–88. [Tsaytts, Ye.S., Sokol'nikov, Yu.N., Khomitskiy, V.V. (1979). Engineering research and development of accumulative forms of the coastal zone of the sea. The study of the dynamics of the relief of sea coasts / p. ed. V.P. Zenkovich, L.G. Nikoforov. Moscow : Nauka. pp. 81–88 (in Russian)].
27. Чаус, В.Б., Касьянов, Є.О., Давидов, О.В., Муркалов, О.Б. (2022). Про динамічні тенденції розвитку Сухої коси (Кінбурнський півострів, Чорне море). Теорія і практика берегознавства та природокористування : збірник матер. міжнар. конф. (Одеса, 30–31 травня 2022 р.) / Одеса : Одес. нац. ун-т ім. І.І. Мечникова, 2022. 88 с. [Chaus, V.B., Kasyanov, E.O., Davydov, O.V., Murkalov, O.B. On Dynamic Trends Of The Development Of The Sukha Spit (Kinburn Peninsula, Black Sea) Theory and practice of coastal science and nature management : Collection. the mother international conf. (Odesa, May 30–31, 2022) / Ed. board. Odesa : Odesa. national University named after I.I. Mechnikova, 2022. 88 p. (in Ukrainian)].
28. Шванов, В.Н. (1969). Песчаные породы и методы их изучения (распространение, структуры, текстуры). Недра. 240. [Shvanov, V.N. (1969). Sandy rocks and methods of their study (distribution, structures, textures). Nedra. 240 (in Russian)].
29. Шуйский, Ю.Д. (1971) Россыпи слоя волновой переработки и их генетические особенности. Доклады АН СССР. 196 (6). 1430–1433. [Shuisky, Yu.D., 1971a. Wave drag layer placers and their genetic peculiarities, U.S.S.R. Acad. Sci. Rept. 196 (6). 1430–1433 (in Russian)].
30. Шуйский, Ю.Д. (1986). Проблема исследования баланса наносов в береговой зоне морей. Ленинград : Гидрометиздат, 240. [Shuisky, Y.D. (1986). Problem of research of sediment balance in the coastal zone of the seas. Leningrad: Gidrometizdat, 240 (in Russian)].
31. Шуйский, Ю.Д. (1999). Распределение наносов вдоль морского края Кинбурнского полуострова (Черное море). Доклады НАН Украины. 8. c. 119–123. [Shuisky, Yu.D. (1999). Distribution of sediment along the sea edge of the Kinburn Peninsula (Black Sea). Reports of the National Academy of Sciences of Ukraine. 8. pp. 119–123 (in Russian)].
Published
2023-12-21
Pages
42-52
Section
SECTION 2 NATURAL-GEOGRAPHICAL AND ECOLOGICAL RESEARCHES