ASSESSMENT OF THE STATE OF FOREST BELTS OF DONETSK REGION IN THE COMBAT ZONE USING SENTINEL-2 SATELLITE IMAGES

Keywords: military activities, forest belts, remote sensing, NDVI, Sentinel-2

Abstract

Military operations in the practically treeless steppe zone of Ukraine somehow affect forest belts. Itis in the forest belts that defence lines with trenches, dugouts, and tunnels are built, for the constructionof which wood from forest belts is used. Defence lines in forest belts are exposed to the most intenseartillery and rocket fire and are the object of assault operations, which probably leads to varying degreesof degradation of forest belt plantations. The purpose of the research was to assess the condition of forestbelts directly in the combat zone, in particular, by studying the intra-annual distribution of the NDVIindicator in 2021 and 2023, using remote sensing methods, in particular, in the Donetsk region. For thispurpose, multispectral cloudless Sentinel-2 satellite images were used, which were processed in the BOSentinel Hub browser. According to the research, the period “February – early May” is characterized bythe absence of a significant difference in NDVI values between the pre-war and war years. This is dueto the fact that the main trees (oaks and robins) in the forest belts were partially destroyed as a resultof military operations. Degraded secondary tree species and shrubs, together with the grass cover, donot significantly reduce the NDVI value at the beginning of the growing season in April and early Maycompared to pre-war conditions. However, during the period when the maximum photosynthetic activityof forest belt vegetation is observed (June-July), the NDVI was significantly lower in 2023 comparedto 2021. Most likely, such a decrease in NDVI indicates a partial degradation of the main woody andsecondary vegetation in the forest belts as a result of military activities. Thus, the process of gradual destruction of the forest belt network is underway in the combat zones in Donetsk region, which worsenstheir soil and field protection functions and loss of ecological capacity.

References

1. Закон України «Про екологічну мережу України». (2004). Відомості Верховної Ради України, 45, 502. [Law of Ukraine «On the Ecological Network of Ukraine» (2004). Bulletin of the Verkhovna Rada of Ukraine, 45, 502 (іn Ukrainian)].
2. Омелич, І.Ю., Яременко, А.А., Непошивайленко, Н.О., Горай, І.В. (2019). Визначення тенденцій розвитку рослинного покриву на підставі розрахунку нормалізованого вегетаційного індексу на прикладі Петриківського району Дніпропетровської області. Український журнал дистанційного зондування Землі, 23, 9–13. [Omelych, I.Y., Yaremenko, A.A., Neposhyvailenko, N.O., Gorai, I.V. (2019). Determination of trends in the development of vegetation cover based on the calculation of the normalized vegetation index on the example of Petrykivskyi district of Dnipropetrovska oblast. Ukrainian Journal of Remote Sensing of the Earth, 23, 9–13 (іn Ukrainian)].
3. Чиркова, О.В. (2010). Структура лесополос как составных элементов экологической сети. Проблеми екології та охорони природи техногенного регіону, 1(10), 97–104. [Chirkova, O.V. (2010). The structure of forest belts as constituent elements of the ecological network. Problems of ecology and nature protection of the technogenic region, 1 (10), 97–104 (іn Ukrainian)].
4. Чорний, С.Г. (2018). Кількісна оцінка вітрової ерозії ґрунту: можливості WEQ. Агрохімія та ґрунтознавство, 87, 23–28. [Chornyy, S.G. (2018). Quantitative assessment of wind erosion of soil: possibilities of WEQ, Agrochemistry and soil science, 87, 23–28 (іn Ukrainian)].
5. Чорний, С.Г., Хотиненко, О.М., Волошенюк, А.В. (2015). Трансформація протидефляційної стійкості ґрунтів лівобережного степу України в контексті сучасних змін клімату. Агрохімія і ґрунтознавство, 83, 49–54. [Chornyy, S.G., Khotynenko, O.M., Voloshenyuk, A.V. (2015). Transformation of soil wind erodibility of the left-bank steppe of Ukraine in the context of modern climate change, Agrochemistry and Soil Science, 83, 49–54 (іn Ukrainian)].
6. EOS Data analysis (2023). NDVI: Normalized Difference Vegetation Index. https://eos.com/makean-analysis/ndvi (date of access: 06.06.2023).
7. Lasaponara, R., Abate, N., Fattore, C., Aromando, A., Cardettini, G., Di Fonzo, M. (2022). On the Use of Sentinel-2 NDVI Time Series and Google Earth Engine to Detect Land-Use/Land-Cover Changes in Fire-Affected Areas. Remote Sens., 14, 4723. DOI: https://doi.org/10.3390.
8. Lastovicka, J., Svec, P., Paluba, D., Kobliuk, N., Svoboda, J., Hladky, R. Stych, P. (2020). Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sens., 12, 1914. DOI: 10.3390/rs12121914.
9. Marina, P., Temudo, J., Silva, M.N. (2012) Agriculture and forest cover changes in post-war Mozambique. Journal of Land Use Science, 7:4, 425–442. DOI: 10.1080/1747423X.2011.595834.
10. Recanatesi, F., Giuliani, Ch., Nicolina, Ripa M. (2018). Monitoring Mediterranean Oak Decline in a Peri-Urban Protected Area Using the NDVI and Sentinel-2 Images: The Case Study of Castelporziano State Natural Reserve. Sustainability, 2018, 10, 3308. DOI: 10.3390/su10093308.
11. Shevchuk, S., Vyshnevskyi, V., Bilous, O. (2022). The use of remote sensing data that is studying the environmental consequences of the Russian invasion of Ukraine, Research Square, 1–19. DOI: https://doi.org/10.21203/rs.3.rs-1770802/v1.
12. Schneibel, A., Frantz, D., Achim, A, Stellmes, M., Fischer, K., Hill, K. (2017). Using Annual Landsat Time Series for the Detection of Dry Forest Degradation Processes in South-Central Angola. Remote sensing. 9, 905. DOI: 10.3390/rs9090905.
13. Telesca, L., Lasaponara, R. (2010). Analysis of Time-Scaling Properties in Forest-Fire Sequence Observed in Italy. Ecol. Model, 221, 90–93.
14. Witmer, F.D.W. (2015) Remote sensing of violent conflict: eyes from above. International Journal of Remote Sensing, 36:9, 2326–2352. DOI: 10.1080/01431161.2015.1035412.
Published
2023-12-21
Pages
64-72
Section
SECTION 2 NATURAL-GEOGRAPHICAL AND ECOLOGICAL RESEARCHES