WATER REGIME CHARACTERISTICS OF FLOODPLAIN LANDSCAPES IN THE GNYLOPYAT RIVER BASIN BASED ON MULTISPECTRAL DATA OF THE NORMALIZED MNDWI INDEX

Keywords: floodplain landscapes, MNDWI, remote sensing, water regime, Gnylopyat River basin, multispectral indices, satellite data, hydroecological monitoring

Abstract

The article is devoted to studying the water regime characteristics of floodplain landscapes in the Gnylopyat River basin using the MNDWI multispectral index and modern remote sensing methods. The research objective is to establish patterns of seasonal dynamics and spatial differentiation of floodplain wateriness to substantiate scientific-practical approaches for monitoring and managing water resources of small rivers in the Polissya region. The study is based on comprehensive analysis of Landsat satellite data for 2022–2024 using the Modified Normalized Difference Water Index, which demonstrates high efficiency in detecting water surfaces while minimizing the influence of built-up areas and vegetation. Hydrological features of the 2150 km² basin were analyzed, including long-term runoff dynamics for 1991–2020 and water balance structure considering the role of infiltration-influent processes. MNDWI values show pronounced seasonal variability with maximum indicators during spring period due to snowmelt and floods, and minimum values during summer-autumn season. Progressive increase in floodplain landscape wateriness was revealed throughout the study period, especially in central and southern parts of the basin, where maximum MNDWI values exceeded 0.4000, indicating formation of new water surfaces or groundwater level rise. Spatial differentiation of water content closely correlates with geomorphological features of the floodplain: highest index values are characteristic of central lowered parts with prolonged water retention, while peripheral areas demonstrate better drainage. Research results reveal ecological significance of regime characteristics for floodplain biocenosis functioning and have important practical value for optimizing hydroecological monitoring, developing river basin management plans, and integration into early warning systems for extreme hydrological events.

References

1. Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O'Loughlin, F., ... Paris, A. (2010). Opportunities for hydrologic research in the Congo Basin. Reviews of Geophysics, 48(4). https://doi.org/10.1029/2010RG000335
2. Cavallo, C., Papa, M. N., Gargiulo, M., Palau-Salvador, G., Vezza, P., & Ruello, G. (2022). Detection of surface water and floods with multispectral satellites. Remote Sensing, 14(23), 6005. https://doi.org/10.3390/rs14236005
3. Chen, Y., Xu, Y., & Yin, Y. (2009). Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China. Quaternary International, 208(1–2), 121–128. https://doi.org/10.1016/j.quaint.2008.12.014
4. Foster, T., Mieno, T., & Brozović, N. (2020). Satellite‐based monitoring of irrigation water use: Assessing measurement errors and their implications for agricultural water management policy. Water Resources Research, 56(11), e2020WR028378. https://doi.org/10.1029/2020WR028378
5. Grenfell, S., Ellery, W., & Ellery, M. (2025). Development and application of a hybrid terrain–multispectral image model of floodplain hydroperiod. Wetlands Ecology and Management, 33(1), 8. https://doi.org/10.1007/s11273-025-10072-1
6. Hopkinson, C., Fuoco, B., Grant, T., Bayley, S. E., Brisco, B., & MacDonald, R. (2020). Wetland hydroperiod change along the Upper Columbia River floodplain, Canada, 1984 to 2019. Remote Sensing, 12(24), 4084. https://doi.org/10.3390/rs12244084
7. Huang, C., Chen, Y., Zhang, S., & Wu, J. (2018). Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, 56(2), 333–360. https://doi.org/10.1029/2018RG000598
8. Jin, H., Huang, C., Lang, M. W., Yeo, I.-Y., & Stehman, S. V. (2017). Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011. Remote Sensing of Environment, 190, 26–41. https://doi.org/10.1016/j.rse.2016.12.001
9. Lefebvre, G., Davranche, A., Willm, L., Campagna, J., Redmond, L., Merle, C., Guelmami, A., & Poulin, B. (2019). Introducing WIW for detecting the presence of water in wetlands with Landsat and Sentinel satellites. Remote Sensing, 11(19), 2210. https://doi.org/10.3390/rs11192210
10. Li, J., Ma, R., Xue, K., Loiselle, S., & Zhang, Y. (2025). A global multi-sensor dataset of surface water indices from Landsat-8 and Sentinel-2 satellite measurements. Scientific Data, 12, 23. https://doi.org/10.1038/s41597-025-05562-z
11. Li, N., Wang, L., Wu, Y., Wang, Y., Liao, M., & Wang, C. (2014). Seasonal inundation monitoring and vegetation pattern mapping of the Erguna floodplain by means of a RADARSAT-2 fully polarimetric time series. Remote Sensing of Environment, 152, 426–440. https://doi.org/10.1016/j.rse.2014.07.009
12. McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
13. Osypov, V., Bawa, A., Osadcha, N., Osadchyi, V., Shevchenko, O., Bonchkovskyi, A., Kostetskyi, O., Nikoriak, V., Ahafonov, Y., Matviienko, Y., Mossur, H., O'Donncha, F., Jacobs, M., Srinivasan, R., Arnold, J., & White, M. J. (2025). A high‐resolution hydrological dataset for Ukrainian river basins with an interactive web interface. Geoscience Data Journal, 12, Article gdj3.70027. https://doi.org/10.1002/gdj3.70027
14. Sheffield, J., Wood, E. F., Pan, M., Beck, H., Coccia, G., Serrat‐Capdevilla, A., & Verbist, K. (2018). Satellite remote sensing for water resources management: Potential for supporting sustainable development in data‐poor regions. Water Resources Research, 54(12), 9724–9758. https://doi.org/10.1029/2018WR023090
15. Tsyhanenko-Dziubenko, I., Kireitseva, H., & Fonseca Araújo, J. (2024). Physiological and biochemical biomarkers of macrophyte resilience to militaryrelated toxic stressors. Journal of Environmental Problems, 9(4), 227–234. https://doi.org/10.23939/ep2024.04.227
16. Tsyhanenko-Dziubenko, I., Kireitseva, H., Sheliah, K., Levytska, T., & Kalenska, V. (2025). Mathematical forecasting of spatio-temporal dynamics of hydroecological parameters of river ecosystems using integrally-modified Streeter-Phelps model. Journal of Environmental Problems, 10(3), 309–316. https://doi.org/10.23939/ep2025.03.309
17. Tsyhanenko-Dziubenko, I., Kireitseva, H., Shomko, O., Gandziura, V., & Khamdosh, I. (2025). Analytical assessment of heavy metals polyelement distribution in urbanized hydroecosystem components: Spatial differentiation and migration patterns. Journal of Environmental Problems, 10(2), 135–144. https://doi.org/10.23939/ep2025.02.135
18. Tsyhanenko-Dziubenko, I., Šerevičienė, V., & Ustymenko, V. (2024). Dissecting biochemical mechanisms that mediate tolerance to military chemical stressors in diverse malacological systems. Environmental Problems, 9(1), 51–58. https://doi.org/10.23939/ep2024.01.051
19. Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
20. Циганенко-Дзюбенко, І. Ю., & Кірейцева, Г. В. (2025). Прогнозування гідроекологічного стану річки Тетерів з використанням модифікованої моделі Стрітера-Фелпса. Гідрологія, гідрохімія і гідроекологія, 1(75), 53–64.
Published
2025-12-23
Pages
43-51
Section
SECTION 2 NATURAL-GEOGRAPHICAL AND ECOLOGICAL RESEARCHES