ТОПОКЛІМАТИ СЕРЕДНЬОГО ПРИДНІСТЕР’Я ЗА ДАНИМИ ЦИФРОВИХ МЕТЕОСТАНЦІЙ DAVIS

Ключові слова: топоклімат, цифрові метеостанції, метеорологічний моніторинг, зміни клімату, природокористування

Анотація

У статті досліджується потенціал використання даних цифрових безпровідних метеостанцій для виявлення топокліматичних відмінностей у природних регіонах зі складно побудованими поверхнями. Установлено доцільність використання цифрових метеостанцій Davis як сучасних, точних і надійних дистанційних інструментів для метеорологічного моніторингу, зокрема для виявлення топокліматичних відмінностей, важливих для управління природокористуванням. Топокліматичне різноманіття досліджено на прикладі природного регіону Середнього Придністер’я з використанням строкових даних цифрових метеостанцій та опорних метеостанцій Національної гідрометеорологічної мережі за період із 1 червня 2020 р. по 31 травня 2021 р. Статистичний і графічний аналіз у програмному забезпеченні Weatherlink виявив чіткі топокліматичні відмінності в регіоні Середнього Дністра. Верхні правобережні тераси долини річки Дністер характеризуються вищими добовими температурами повітря і зглагодженішим ходом температур повітря порівняно з іншими топокліматами; топоклімати лівобережних низьких терас – значними добовими амплітудами температур і меншою кількістю атмосферних опадів. Для поперечних долин лівобережних допливів властиві нижчі нічні температури повітря. Дані спостережень із цифрових метеостанцій показують найтіснішу кореляцію в ході температур повітря з даними найближчих опорних метеостанцій і помітні відхилення в ході атмосферних опадів. Результати підтверджують регіональні тенденції глобальних змін клімату (потепління й аридизації особливо в теплий період). Можливість визначення місцевих кліматичних рис за допомогою метеорологічного моніторингу цифрових метеостанцій підтверджує важливість і перспективи розширення мережі спостережень цифровими метеостанціями на територіях, не охоплених Національною гідрометеорологічною мережею.

Посилання

1. Геренчук, К.І. (Ред.) (1979). Природа Тернопільської області. Львів : Вища школа. [Herenchuk, K.I. (Ed.) (1979). Nature of Ternopil region. Lviv, Higher School (in Ukrainian)].
2. Геренчук, К.І. (Ред). (1980). Природа Хмельницької області. Львів, Вища школа. [Herenchuk, K.I. (Ed). (1980). Nature of Khmelnytskyi region. Lviv, Higher School (in Ukrainian)].
3. Денисик, Г.І. (1996). Край каньйонів – Середнє Придністров’я. УГЖ, 3, 60–63. [Denysyk, H.I. (1996). Land of canyons – Middle Dniester Region. UGJ, 3, 60–63 (in Ukrainian)].
4. Денисик, Г.І. (Ред.). (2007). Середнє Придністров’я. Вінниця : ПП Теза, 2007. [Denysyk, G.I. (Ed.). (2007). Middle Dniester Region. Vinnytsia, PP «Teza Publishing House», 2007 (in Ukrainian)].
5. Дутчак, М.В. (2013). Ландшафтні комплекси Середнього Придністер’я та їх зміни під впливом гідротехнічної системи. Чернівці : Родовід. [Dutchak, M.V. (2013). Landscape complexes of the Middle Dniester Region and their changes under the influence of the hydraulic system. Chernivtsi, Rodovid (in Ukrainian)].
6. Киналь, О. (2006). Особливості клімату Середнього Подністров’я. Науковий вісник Чернівецького університету : збірник наукових праць, 294, 149–175. [Kynal, O. (2006). Features of the climate of Middle Dniester Region. Scientific bulletin of Chernivtsi University: collection of scientific works, 294, 149–175 (in Ukrainian)].
7. Кабінет Міністрів України (2016). Концепція реалізації державної політики у сфері зміни клімату на період до 2030 року : Розпорядження від 7 грудня 2016 р. № 932-р. [Cabinet of Ministers of Ukraine (2016). The concept of implementation of state policy in the field of climate change for the period up to 2030. Order No. 932 of December 7, 2016 (in Ukrainian)].
8. Кліматичний кадастр України (електронна версія). (2006). Державна гідрометеорологічна служба УкрНДГМІ. Центральна геофізична обсерваторія. [Climatic cadastre of Ukraine (electronic version). (2006). State hydrometeorological service of UkrNDGMI. Central Geophysical Observatory (in Ukrainian)].
9. Муха, Б. (2003). Топокліматичні особливості верхів’я басейну ріки Дністер. Сучасні проблеми і тенденції розвитку географічної науки : матеріали Міжнар. конф. до 120-річчя географії у Львів. ун-ті. Львів : Видавничий центр ЛНУ ім. І. Франка. 184–187. [Mukha, B. (2003). Topoclimatic features of the Upper Dniester River basin. Modern problems and trends in the development of geographical science: materials of the international conf. to the 120th anniversary of geography in Lviv. Univ. Lviv, LNU Publishing Center named after I. Franko. 184–187 (in Ukrainian)].
10. Холявчук, Д. (2006). Регіональні особливості кліматотворення в межах Середнього Придністров’я. Науковий вісник Чернівецького університету. Серія «Географія» : збірник наукових праць, 305, 95–102. [Kholiavchuk, D. (2006). Regional features of climate formation within the Middle Dniester Region]. Scientific bulletin of Chernivtsi University: Collection of scientific papers. Geography, 305, 95–102 (in Ukrainian)].
11. Холявчук, Д. (2007). Топокліматична неоднорідність як аспект природного різноманіття каньйону Дністра. Річкові долини. Природа – ландшафти – людина : збірник наукових праць. Чернівці, Сосновець. 241–247. [Kholiavchuk, D. (2007). Topoclimatic heterogeneity as an aspect of the natural diversity of the Dniester Canyon. River valleys. Nature – landscapes – man : Collection of scientific papers. Chernivtsi, Sosnovets. 241–247 (in Ukrainian)].
12. Холявчук, Д. (2013). Висотна кліматична неоднорідність середньодністерських долинних ландшафтів у районі водосховища. Наукові записки Вінницького державного педагогічного університету імені Михайла Коцюбинського. Серія «Географія», 25, 172–179. [Kholiavchuk, D. (2013). Altitude climatic heterogeneity of Middle Dniester valley landscapes in the reservoir area. Scientific notes of Vinnytsia State Pedagogical University named after Mykhailo Kotsyubynskyi. Series: Geography, 25, 172–179 (in Ukrainian)].
13. Настанова гідрометеорологічним станціям і постам. (2011). Випуск 3. Частина 1 : Метеорологічні спостереження на станціях. Київ : Ніка-Центр. [Instructions for hydrometeorological stations and posts. (2011). Issue 3. Part 1. Meteorological observations at stations. Kyiv, Nika Center (in Ukrainian)].
14. Akinwumi, S.A., Omotosho, T.V., Usikalu, M.R., Odetunmibi, O.A., Ometan, O.O., Adewusi, M.O., Omeje, M., & Joel, E.S. (2018). Comparison between experimental and satellite temperature datasets in Covenant University. Data in Brief, 20. https://doi.org/10.1016/j.dib.2018.08.012.
15. Amorim, M.C. de C.T., & Dubreuil, V. (2017). Intensity of urban heat islands in tropical and temperate climates. Climate, 5 (4). https://doi.org/10.3390/cli5040091.
16. Bell, S., Cornford, D., & Bastin, L. (2015). How good are citizen weather stations? Addressing a biased opinion. Weather, 70 (3). https://doi.org/10.1002/wea.2316.
17. Butler, M K. (2019). Personal weather stations and sharing weather data via the Internet. Weather, 74(1). https://doi.org/10.1002/wea.3206.
18. Calderon-Cordova, C., Jaramillo, A., Tinoco, C., & Quinones, M. (2016). Design and implementation of an architecture and methodology applied to remote monitoring of weather variables. https://doi.org/10.1109/cisti.2016.7521465.
19. Dejmal, K., Hudec, F., Kolar, P., & Novotny, J. (2017). Evaluation of measurement quality of selected elements on the meteorological stations Meteos6 and Davis Vantage Pro 2 in the military quarters area of Černá Pole. ICMT 2017 – 6th International Conference on Military Technologies. https://doi.org/10.1109/MILTECHS.2017.7988777.
20. Dunaieva, I., Vecherkov, V., Filina, Y., Popovych, V., Barbotkina, E., Pashtetsky, V., Terleev, V., Mirschel, W., & Akimov, L. (2021). Review of automatized meteorological stations use for agricultural purposes. IOP Conference Series: Earth and Environmental Science, 937 (3). https://doi.org/10.1088/1755-1315/937/3/032097.
21. Gabała, J. (2017). State Higher Vocational School Weather Station in Tarnów. Science, Technology and Innovation, 1 (1). https://doi.org/10.5604/01.3001.0010.7618.
22. Gkikas, A., & Maragoudakis, M. (2022). Meteorological Data Science: exploiting causality discovery in time-series for knowledge discovery and improved forecasting. Proceedings of the 16th International Conference on Environmental Science and Technology, 16. https://doi.org/10.30955/gnc2019.00828.
23. Jenkins, G. (2014). A comparison between two types of widely used weather stations. Weather, 69 (4). https://doi.org/10.1002/wea.2158.
24. Huamán, E.N., Fernández, L.R., & Ramírez, L.R.R. (2020). Coefficient of cropping (Kc) of rice from drain lysimeter in the Molina, Lima-Perú.Idesia, 38 (2). https://doi.org/10.4067/S0718-34292020000200049.
25. Krüger, E., Drach, P., & Broede, P. (2017). Outdoor comfort study in Rio de Janeiro: siterelated context effects on reported thermal sensation. International Journal of Biometeorology, 61 (3). https://doi.org/10.1007/s00484-016-1226-8.
26. Krüger, E., Drach, P., Emmanuel, R., & Corbella, O. (2013). Urban heat island and differences in outdoor comfort levels in Glasgow, UK. Theoretical and Applied Climatology, 112 (1–2). https://doi.org/10.1007/s00704-012-0724-9.
27. Kynal, O., & Kholiavchuk, D. (2016). Climate variability in the mountain river valleys of the Ukrainian Carpathians. Quaternary International. https://doi.org/10.1016/j.quaint.2015.12.053.
28. Lagouvardos, K., Kotroni, V., Bezes, A., Koletsis, I., Kopania, T., Lykoudis, S., Mazarakis, N., Papagiannaki, K., & Vougioukas, S. (2017). The automatic weather stations NOANN network of the National Observatory of Athens: operation and database. Geoscience Data Journal, 4 (1). https://doi.org/10.1002/gdj3.44.
29. Munandar, A., Fakhrurroja, H., Rizqyawan, M.I., Pratama, R.P., Wibowo, J.W., & Anto, I.A.F. (2017). Design of real-time weather monitoring system based on mobile application using automatic weather station. Proceedings of the 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology, ICACOMIT 2017, 2018-January. https://doi.org/10.1109/ICACOMIT.2017.8253384.
30. Ometan, O.O., Omotosho, T.V., Adewusi, M.O., Akinwumi, S.A., Emetere, M.E., & Boyo, A.O. (2019). Six Years Result of Rainfall Rate Measurement at Covenant University, Southwest, Nigeria. Journal of Physics: Conference Series, 1299 (1). https://doi.org/10.1088/1742-6596/1299/1/012061.
31. Romashchenko, M.I., Matіash, T.V., Bohaienko, V.O., Kovalchuk, V.P., Voitovich, O.P., Krucheniuk, A.V., Knysh, V.V., & Shlikhta, V.V. (2019). Development Experience and Ways of Improvement of Irrigation Management Systems. Меліорація і водне господарство : міжвідомчий тематичний науковий збірник, 2. [Romashchenko, M.I., Matiash, T.V., Bohaienko, V.O., Kovalchuk, V.P., Voitovich, O.P., Krucheniuk, A.V., Knysh, V.V., & Shlikhta, V.V. (2019). Development Experience and Ways of Improvement of Irrigation Management Systems. Interdepartmental Thematic Scientific Collection «Reclamation and Water Management»]. https://doi.org/10.31073/mivg201902-207.
32. Szalai, S., Auer, I., Hiebl, J., Milkovich, J., Radim, T. Stepanek, P., Zahradnicek, P., Bihari, Z., Lakatos, M., Szentimrey, T., Limanowka, D., Kilar, P., Cheval, S., Deak, Gy., Mihic, D., Antolovic, I., Mihajlovic, V., Nejedlik, P., Stastny, P., Mikulova, K., Nabyvanets, I., Skyryk, O., Krakovskaya, S.,Vogt, J., Antofie, T., Spinoni, J. (2013). Climate of the Greater Carpathian Region. Final Technical Report. URL: www.carpatclim-eu.org (date of access: 06.06.2023).
33. WMO. (2018). Guide to meteorological instruments and methods of observation; WMO-No. 8: Measurement of Meteorological Variables. In World Meteorological Organization: Vol. I (Issue 8).
34. Yildirim, V., Nisanci, R., Colak, E.H., & Yildiz, O. (2016). A GIS-based siting technique for automatic weather stations in Trabzon, Turkey. Weather, 71 (2). https://doi.org/10.1002/wea.2695.
Опубліковано
2023-12-21
Сторінки
53-63
Розділ
СЕКЦІЯ 2 ПРИРОДНИЧО-ГЕОГРАФІЧНІ ТА ГЕОЕКОЛОГІЧНІ ДОСЛІДЖЕННЯ